

Development of population monitoring methods for the reintroduced Allis shad (*Alosa alosa*) in the Rhine system

Elodie Boussinet¹, Françoise Daverat² & Stefan Stoll¹

¹ University of Applied Sciences Trier - Environmental Campus Birkenfeld, Hoppstädten-Weiersbach (Germany)

² INRAE - Institut National de Rercherche pour l'Agriculture, l'alimentation et l'Environnement, UMR ECOBIOP, Saint Pée sur Nivelle (France)

LOCAL AND GLOBAL INITIATIVES:

HOW SCIENCE SUPPORTS MANAGEMENT ACTIONS ON DIADROMOUS FISH

THE ALLIS SHAD PROJECT

A story of a long-term project

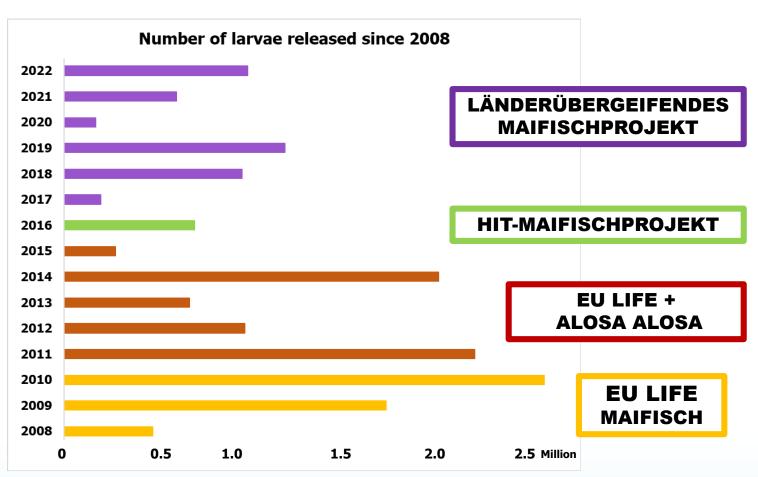
❖ No record of Alosa alosa in the Rhine since the middle of the 20th century

❖ Since 2008:

- ✓ Annual reintroduction of larvae
- ✓ Monitoring :
- Fish pass and Fisheries: Rhine (Gambsheim & Iffezheim) Mosel
 (Coblence) Neckar (Ladenburg) Lower Rhine (stow-net / pro fishermen)
- Parental assignment (genetic analysis PhD Kathrin Mäck, University of Landau, DE)
- Bull-monitoring (2017-2021)
- Otolith microchemistry

Project 2017-2021 :

- Conservation program
- Scientific research
- Education


THE ALLIS SHAD PROJECT

Released vs. Returnees

About 16 million larvae released

THE ALLIS SHAD PROJECT

Released vs. Returnees

UNIVERSITÄT
DUISBURG
ESSEN

❖ More than 800 adults returnees observed since 2008

Video surveillance from the fish pass on the Mosel river - Coblence

Adult caught at the fish pass in Gambsheim (2020)

Objective and methods

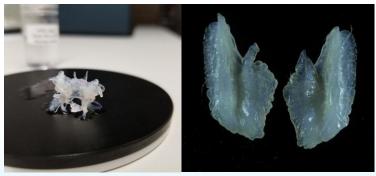
- Increase knowledge of the life cycle, identify spawning areas and evaluate the success of the Allis shad reintroduction program in the Rhine system
- Uses of otoliths
- ✓ MICROCHEMISTRY: Recording of information from the surrounding environment and the <u>natal origin of the reared and caught individuals</u>
 - Sub-catchment differentiation
 - Identification of potential new spawning rivers/locations

- ✓ OXYTETRACYCLINE (OTC): help in the <u>identification</u> of reintroduced shad
 - Natural reproduction vs. Reintroduction

Method to get reference values

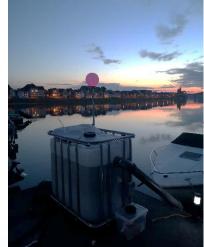
Tank experiment

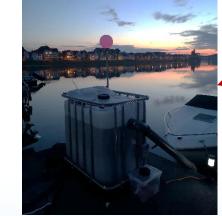
- ✓ Why?
 - Establish reference values (Sr/Ca & Ba/Ca & ⁸⁶Sr/⁸⁷Sr) from fish of known origin
- ✓ How?
 - Sampling of <u>larvae</u> and <u>water</u> (tank + river) **every week** for 100 days
 - Otolith extraction + polishing + photo
 - ICP-MS analyses



- ✓ Where?
 - 4 specific locations chosen

Tank experiments: 4 locations

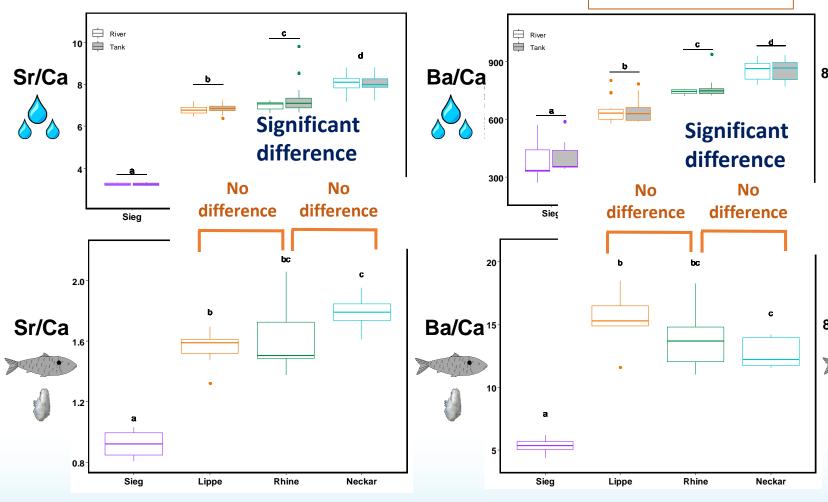


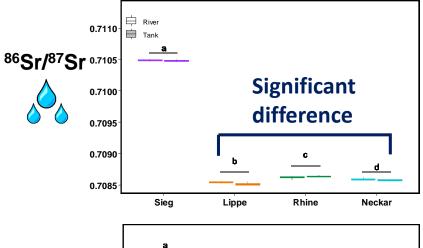

GERMANY NETHERLANDS Nordrhein-Westfalen **BELGIUM**

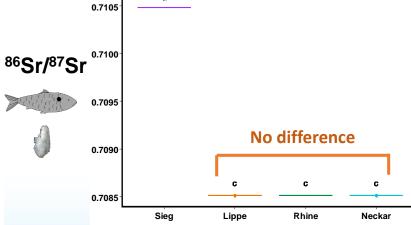
SIEG - Siegburg

RHINE - Vallendar

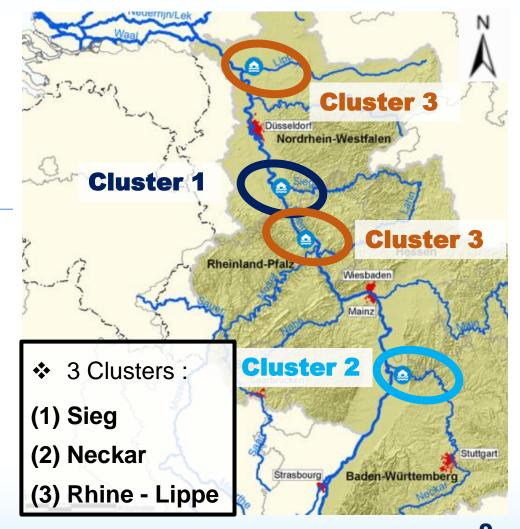
NECKAR - Dossenheim


MICROCHEMISTRY AND NATAL ORIGIN: RESULTS


Elemental and isotopic ratios in water and otoliths

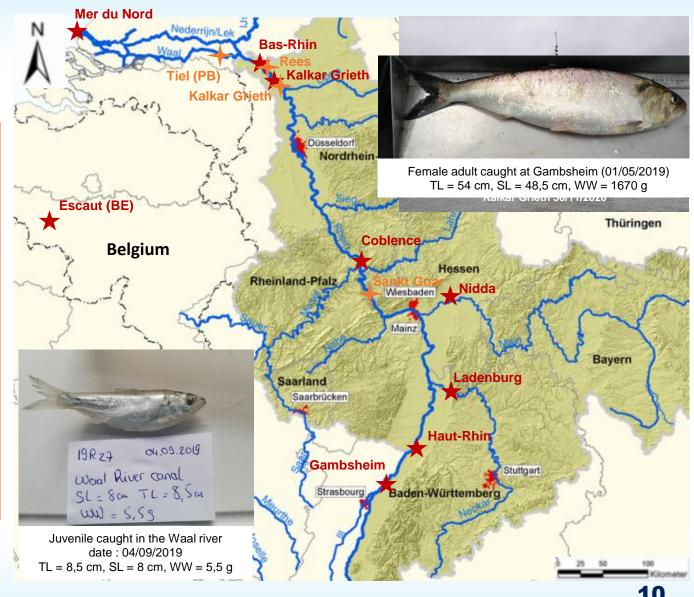

Ba/Ca INCONCLUSIVE

MICROCHEMISTRY AND NATAL ORIGIN: RESULTS


Reattribution model: Random forest

- Variables used: Sr:Ca and 86Sr/87Sr
- A total 68 % of fish tested randomly have been reattributed correctly

EXPERIMENTED LOCATION **SIEG LIPPE RHINE NECKAR SIEG** 100.0 % PREDICTED **LIPPE** 45.0 % 17.5 % 20.0 % **RHINE** $\mathbf{0}$ 55.5 % 5.0 % 47.0 % **NECKAR 75.0** % 0 8.0 % 27.0 %

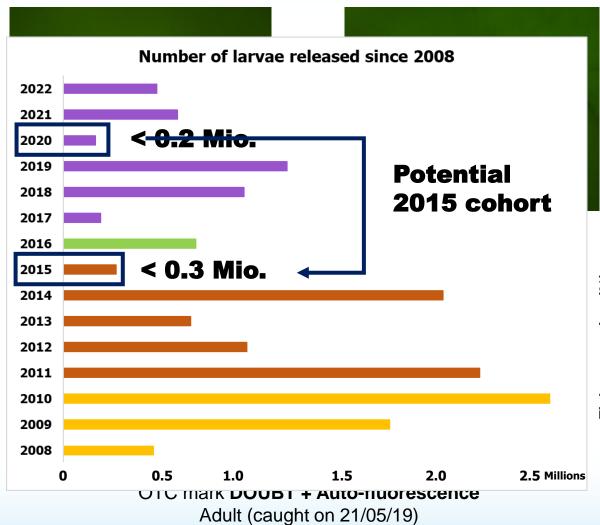

COLLECTION OF CAUGHT FISHS

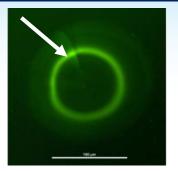
Individual with UNKNOWN origin from 2017 to 2021

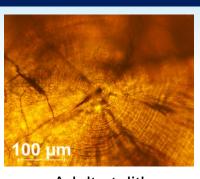
Rivière	Localisation	2017		2018		2019		2020		2021	
Riviere		Α	J	Α	J	Α	J	Α	J	Α	J
Rhine	Gambsheim (FR)	-	-	2	-	21	-	2	-	-	
Neckar	Ladenburg	-	-	-	-	3	-	1	-	-	
Nidda	-	-	-	2	-	-	-	-	-	-	-
Rhine	Sankt-Goar	-	1	-	-	-	-	-	-	-	-
Rhine	Coblence	-	-	-	-	1	-	-	-	-	-
Rhine	Haut-Rhin	-	-	-	-	1		1	-	-	-
Rhine	Kalkar-Grieth	-	2	-	-	-	11	-	17	1	-
Rhine	Bas-Rhin	-	-	-	-	1		-	-	-	-
Rhine	Rees	-	-	-	-	-	-	-	6		-
Waal	Tiel (PB)	-	-	-	-	-	4	-	-	-	-
Escaut	Avelgem (BE)	-	-	-	-	-		1	-	-	-
NA	Mer du Nord	-	-	-	-	-		2		-	
		0	3	4	0	27	15	7	23	1	0

✓ Total of 39 adults and 41 juveniles

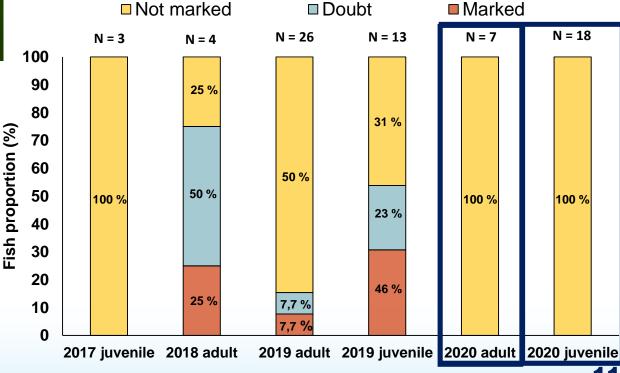
recorded between 2017 and 2021







Oxytetracycline (OTC) mark



OTC mark - Control Juvenile (2014)

Adult otolith Caught on 03/06/19

Reattribution of the wild fish from 2017 to 2020

- ❖ Variables used : Sr:Ca and 86Sr/87Sr
- ❖ 59 individuals tested

REATTRIBUTION

		MIVERO					
		RHINE	LIPPE	NECKAR	SIEG		
	> 75 - 100 %	45.8	6.8	11.9	0.0		
	< 75 %	35.6	0.0	0.0	0.0		
Γ	OTAL	81.4 %	6.8 %	11.9 %	0.0 %		

RIVFRS

- ❖ 52.6 % reattributed to the cluster Rhine-Lippe with more than 75 % of probability
- ❖ 11.9 % reattributed to the cluster Neckar

DISCUSSION & CONCLUSION

Since 2008

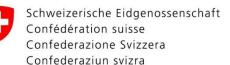
- 16 Million larvae released
- 800 returnees observed
 - 77 caught (39 adults + 41 juveniles)
 - **10%** from reintroduction (OTC mark +)
 - 90% from potential natural reproduction
- ❖ 2 markers : Sr:Ca & 86Sr/87Sr
- 3 clusters: Rhine/Lippe Neckar Sieg
- 52.6 % of fish caught reattributed to the cluster Rhine-Lippe
- ❖ 11.9 % of fish caught reattributed to the cluster Neckar with one fish returned to the natal river
- ❖ Colonization of other rivers (e.g. individual caught in Belgium's river)? Exchange between system ?
- ❖ Necessity to obtain more references values to improve the reattribution of caught fish in the

13

PARTNERS AND INSTITUTIONS

UNIVERSITÄT DUISBURG ESSEN

HOCH SCHULE TRIER

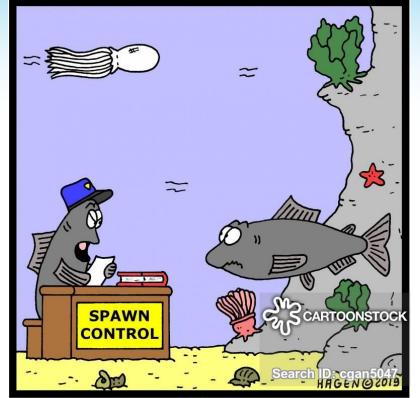


Bundesamt für Umwelt BAFU
Office fédéral de l'environnement OFEV
Ufficio federale dell'ambiente UFAM
Uffizi federal d'ambient UFAM

Project

MINISTERIUM FÜR UMWELT, ENERGIE, ERNÄHRUNG UND FORSTEN

Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz



THANK YOU!

SOME QUESTIONS

Well Sir,

your birth certificate says you were not born here,

SOCIAL MEDIA

@stolllab

CONTACT LIST

Dr. Andreas Scharbert

Project manager

Scharbert@rhfv.de

Prof. Dr. Stefan Stoll

Doctoral supervisor
s.stoll@umwelt-campus.de

Dr. Francoise DaveratCo-Doctoral supervisor

francoise.daverat@inrae.fr

Elodie Boussinet
PhD student

e.boussinet@umwelt.campus.de

PROJECT WEBSITE

www.maifischprojekt.de/en

